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Abstract

We demonstrate how integrated information and other key notions from
Tononi et al.’s Integrated Information Theory (IIT) can be studied within
the simple graphical language of process theories (symmetric monoidal
categories). This allows IIT to be generalised to a broad range of physical
theories, including as a special case the Quantum IIT of Zanardi, Tomka
and Venuti, and sets the foundation for a categorical definition of IIT.
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1. Introduction

Integrated Information Theory (IIT) is a theory of consciousness proposed
and developed by Giulio Tononi and collaborators (Tononi, 2008; Oizumi
et al., 2014). Originally defined in terms of a numerical measure � repre-
senting the level of phenomenal consciousness of a system (Tononi, 2004;
Mediano et al., 2019), the most recent version of the theory, IIT 3.0, now
employs an algorithm which claims to determine in addition which part of a
system is conscious, and what it is conscious of.

Received 28th February 2021; Revised 25th May 2021; Accepted 30th May 2021
Journal of Cognitive Science 22(2): 92-123 June 2021
©2021 Institute for Cognitive Science, Seoul National University



Integrated Information in Process Theories 93

In this article we show how the key concepts of IIT, including systems,
integration and causation, can be studied naturally in the language of physical
process theories, which are mathematically described as symmetric monoidal
categories. Process theories come with an intuitive but rigorous graphical
calculus (Selinger, 2011) which allows us to present many aspects of IIT in
a simple pictorial fashion.

The constructions we provide in this article can be applied to any suitable
process theory to yield a notion of generalised IIT as defined by the authors
in a companion article (Kleiner and Tull, 2021). This allows us to extend
IIT to new physical settings. As special cases, choosing the process theory
of classical probabilistic processes essentially yields the usual IIT 3.0 in the
sense of (Oizumi et al., 2014). Starting instead from the theory of quan-
tum processes gives the Quantum Integrated Information Theory defined
by Zanardi, Tomka and Venuti (Zanardi et al., 2018), which was another
motivation for this work.

Independently of consciousness itself, our constructions provide a pos-
sible foundation for a general theory of integrated or ‘holistic’ behaviour
within process theories, i.e. monoidal categories, which may be of interest
to a broad range of fields. For example, neural net-like systems that achieve
a task using a high degree of integration should be more e�cient than fully
modular ones, in that they require fewer neurons for the same task, and
indeed integrated behaviour has been shown to evolve in simple models of
biological organisms (Albantakis et al., 2014). The methods of IIT have
been applied generally in the study of integration in information processing
systems, including treatments of autonomy (Marshall et al., 2017), causation
(Albantakis et al., 2017), and state di�erentiation (Marshall et al., 2016).

1.1 Background: Mathematical Consciousness Science

The background for our work is in the growing field of Mathematical Con-
sciousness Science (MCS), which aims to apply formal and mathematical
tools in order to resolve open problems in the scientific study of conscious-
ness. One major goal thereby is to expose and improve the mathematical
structure of neuroscientific theories of consciousness so as to allow quantifi-
able comparison between competing models, generate novel experimental
predictions, and to provide a thorough foundation for further development
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and combination of theories. More foundationally, it aims to uncover how
consciousness relates to the physical world in terms of empirically grounded
and philosophically motivated scientific theories. Progress in this direction
is essential for resolving medical challenges (most notably, improving the un-
derstanding of neurological, psychiatric and psychological disorders (Michel
et al., 2019)) and ethical reasons (for example the detection of conscious-
ness in anesthetized or non-communicating patients (Alkire et al., 2008;
Fink et al., 2018)), and could generate new advances in AI (artificial im-
plementation of consciousness-related functions, for example (McDermott,
2007)).

A crucial cornerstone in this program is the representation of conscious
experience in terms of a mathematical spaces, and to expound theories of
consciousness as mappings from a mathematical description of physical
systems to these spaces. Early precursors of the former are quality spaces
(Beals et al., 1968; Clark, 1996, 2000) which make use of just noticeable
di�erence between stimuli to construct a representation of mental qualities
and similarities between them. In the companion article (Kleiner and Tull,
2021), we provide a definition of an experience space that builds upon quality
spaces while being geared at precisely what is required to flash out IIT as a
mathematical mapping of the just-mentioned kind.

This contributes to the exploration and application of category theory as
a framework for theories of consciousness (Tsuchiya et al., 2016; Northo�
et al., 2019; Ehresmann, 2012). Category theory itself provides a natural
language for describing mappings between scientific domains, such as do-
mains of physical systems and those modelling phenomenal experiences.
Its emphasis on processes between systems in particular makes it ideal for
describing theories and experimental findings which relate consciousness
to dynamical processes, as discussed for example in (Fekete and Edelman,
2011; Wiese and Friston, 2020; Grindrod, 2018). The use of monoidal cate-
gories in this article additionally allows us to treat compositional aspects of
systems and processes, which are central to theories such as IIT.

1.2 A Primer on Integrated Information Theory

Though the majority of the article is self-contained and requires no prior
knowledge of the theory, for context we include here a short introduction



Integrated Information in Process Theories 95

to IIT 3.0 (Oizumi et al., 2014), as formulated in its general form in our
companion article (Kleiner and Tull, 2021) to which we refer for a more
detailed presentation of the theory.

Any generalised IIT, including IIT 3.0, takes as input a given class of
physical systems (, each with a given state space St((), and specifies a mapE
which provides each system with a space describing its possible conscious
experiences. Additionally, for each state B 2 St(() the theory specifies a
particular experience E(B) 2 E(() which the system will have in that state:

Physical sys-
tems and states

Spaces and states of
conscious experience

E

In IIT 3.0 the nature of this mapping derives from a number of essential
properties–so called ‘axioms’–which are postulated to characterize every
conscious experience. Next to integration and information, these axioms in-
clude intrinsic existence, composition and exclusion (Tononi, 2015). These
axioms are being translated into formal requirements. To this end, com-
parably simple physical systems are considered. These consist of a set of
elements (or ‘nodes’), each usually with only two states (on or o�), and
come with a discrete Markovian time evolution which is often described via
a given causal graph. The prototypical example would be a human brain,
in which the nodes represent neurons and their firing. The result of the
translation process is the algorithm of IIT 3.0, i.e. the map E when applied
to classical physical systems.

Starting from such a system ( along with its current state B, the theory
then specifies a set of probability distributions known as the cause-e�ect
repertoire. For each pair of subsystems " , % (‘mechanism’ and ‘purview’)
of (, the cause repertoire caus(" , %) is a distribution specifying how the
current state of " constrains the state of % in the previous time-step, and
similarly the e�ect repertoire eff (" , %) addresses the next time-step instead.

In the IIT algorithm one goes on how to calculate how ‘integrated’ each of
these repertoires are by comparing them against repertoires obtained instead
by ‘cutting’ the (evolution of the) system into various parts, by removing
causal connections between them. For each mechanism " one determines
which purviews give the most integrated values of caus(" , %) and eff (" , %),
and these repertoire values (along with their level of integration) determine
a concept for that mechanism. The weighted collection of these concepts
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determines the entityE(B), also known as the Q-shape of the system, which is
claimed to specify its total conscious experience. In particular this Q-Shape
comes with its own level of integration, denoted �(B), which describes ’how
conscious’ the system is as a whole. A final ‘exclusion’ step enforces that
only the subsystem of ( with the highest � value will in fact be conscious.

In the article (Kleiner and Tull, 2021) we show how to define a broad
class of generalisations of IIT, in which for example the repertoires need no
longer be described by probability distributions, but the states of a general
physical theory. In the present article we describe how such IITs may be
defined starting from any physical process theory. To do so we define the
key notions of any IIT within such a setting, namely causal relations and
their integration.

1.3 Structure of Article

The article is structured as follows. We introduce process theories in Section
2 and then use them to describe the key notions from IIT – decompositions
of objects (Section 3), systems (Section 4) and cause and e�ect repertoires
(Section 5). We summarise how to define a generalised IIT from a process
theory in Section 6 before giving examples in Section 7 and discussing future
work in Section 8. The appendix contains some initial steps in developing a
general study of integration in monoidal categories.

2. Process Theories

We begin by introducing the framework of process theories used throughout
this work; for more detailed introductions we refer to (Coecke and Paquette,
2010; Coecke and Kissinger, 2017). The basic ingredients of such a theory
are objects and processes between them. We depict a process from the object
� to the object ⌫ as a box:

5

�

⌫

These processes may be composed together to form new ones in several
ways. Firstly, given a process such as 5 above, and any other process 6 from
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⌫ to ⇠, we may compose them ‘in sequence’ to form a new one from � to
⇠, denoted:

6 � 5 =
5

6

� �

⇠⇠

Secondly, we may compose processes in parallel. Any two objects �, ⌫ may
be combined into a single object � ⌦ ⌫. Moreover any processes 5 from �

to ⌫, and 6 from⇠ to ⇡ may be placed ‘side-by-side’ to form a new process:

5 ⌦ 6 = 5

� ⌦ ⇠ �

⌫⌫ ⌦ ⇡

6

⇡

⇠

from � ⌦⇠ to ⌫ ⌦ ⇡. More generally, by combining these operations, many
processes may all be plugged together to form more complex diagrams
describing a single composite process.

As a convenience, any process theory is taken to come with the following.
Firstly, any object � come with an identity process, depicted as a blank wire
on �, which ‘does nothing’ in that composing with it via � leaves any process
as it is. Secondly, it has a trivial object, denoted �, which leaves objects
alone when combining under ⌦. We depict � as empty space:

=

�

�

Finally, we formally assume the presence of a special process which allows
us to ‘swap’ any pair of wires over each other, along with a set of rules saying
roughly that diagrams in the above sense are well-defined.

Mathematically, all of this is summarised by saying that a process theory
is precisely a symmetric monoidal category (C, ⌦, �) with the processes as
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its morphisms. Our diagrammatic rules correspond to the precise graphical
calculus for reasoning in such categories (Selinger, 2011).

We will often wish to refer to some special kinds of processes. Processes
with ‘no input’ in diagrams (and so formally with input object �) are called
states, and can be thought of as ‘preparations’ of the physical system given
by their output object:

d

Processes with no output, called e�ects, may be thought of as ‘observations’
we may record on our system. Finally, processes with neither input nor output
are called scalars. It is common for theories to come with a probabilistic
interpretation meaning that each of their scalars ? correspond to a probability,
or more generally an ‘unnormalised probability’ ? 2 R+, with A ⌦ B = A · B
for scalars and the empty diagram given by 1. In particular, the composition
of a state with an e�ect

d

4

2 R+

corresponds to the ‘probability’ of observing the e�ect 4 in the state d.
Such ‘generalised probabilistic theories’ are a major focus of study in the
foundations of physics (Barrett, 2007).

The theories we consider here will often come with further structure
giving them a physical interpretation. Firstly, every object will come with a
distinguished discarding e�ect depicted

which we think of as the process of simply ‘throwing away’ or ‘ignoring’ a
physical system. Similarly, every object should come with a distinguished
completely mixed state depicted as

which corresponds to preparing the object in a maximally ‘noisy’ or ‘random’
state. These processes should satisfy

� ⌦ ⌫

=

� ⌫

� ⌦ ⌫

=

� ⌫
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as well as

� = =

�

�

=

for all objects �, ⌫. We then define a process 5 to be causal when it satisfies

5

⌫

�

=

�

or similarly as co-causal if it preserves . Discarding processes are in fact
closely related to physical notions of causality; see for example (Coecke,
2014; Chiribella et al., 2010).

In such a probabilistic theory there is a unique process between any two
objects, the zero process 0, such that composing any process via �, ⌦ with 0
always yields 0.

At times we will assume our process theory also comes with a way of
describing how similar any two causal states are. This amounts to a choice
of distance function on the set Stc(�) of causal states of each object �,
providing a value 3 (0, 1) 2 R+ for each 0, 1 2 Stc(�). Often this map 3
will satisfy the axioms of a metric, but this is not required.

Our main examples of process theories will come with a notable extra
feature, though this will not be necessary for our approach. In many theories
it is possible to ‘reverse’ any process, in that for any process 5 there is
another 5 † in the opposite direction. We say a process theory has a dagger
when it comes with such a mapping

5

⌫

�

7! 5
†

�

⌫

which preserves composition and identity maps in an appropriate sense, and
satisfies 5 †† = 5 for all 5 . The presence of a dagger is a common starting
point in categorical approaches to quantum theory; see e.g. (Abramsky and
Coecke, 2004; Selinger, 2007).
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Let us now meet our main examples of process theories with the above
features.

Example 1 (Classical Probabilistic Processes) In the process theoryClass
of finite-dimensional probabilistic classical physics, the objects are finite
sets �, ⌫,⇠, . . . and the processes 5 from � to ⌫ are functions sending each
element 0 2 � to a ‘unnormalised probability distribution’ over the elements
of ⌫, i.e functions 5 : � ⇥ ⌫ ! R+. Composition of 5 from � to ⌫ and 6
from ⌫ to ⇠ is defined by

(6 � 5 ) (0, 2) =
’
12⌫

5 (0, 1) · 6(1, 2)

In this theory the trivial object is the singleton set � = {¢}, with ⌦ given
by the Cartesian product � ⇥ ⌫ and ( 5 ⇥ 6) (0, 2) (1, 3) = 5 (0, 1) · 6(2, 3).
This theory is probabilistic, with scalars A 2 R+.

Here � is the unique e�ect with �(0) = 1 for all 0 2 �. A process
5 is causal whenever it is stochastic, i.e. sends each element 0 2 � to a
(normalised) probability distribution over the elements of ⌫. Applying the
process to some output wire of a process corresponds to marginalising
over the set which is discarded.

States of an object are ‘R+-distributions’ over their elements, while causal
states are normalised ones, i.e. probability distributions. The completely
mixed state � is the uniform probability distribution, with �(0) = 1

|� |
for

all 0 2 �. This theory also has a dagger by 5
†
(1, 0) = 5 (0, 1).

Similarly we define another process theory Classm, in the same way,
but with objects now being finite metric spaces (�, 3). Each object � now
comes with a metric 3 on its underlying set, with � ⌦ ⌫ = � ⇥ ⌫ having the
product metric. For each object �we extend 3 to a metric 3, on probability
distributions over �, i.e. causal states of �, called the Wasserstein metric or
Earth Mover’s Distance (EMD), definable e.g. by

3, (B, C) := sup
5

{

’
02�

5 (0) · B(0) �

’
02�

5 (0) · C (0)}

where the suprema is taken over all functions 5 satisfying | 5 (0) � 5 (1) | 

3 (0, 1) for all 0, 1. Class itself may be given a metric on causal states in the
same way by taking each object � to have metric 3 (0, 1) = 1 � X0,1.
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Example 2 (Quantum Processes) In the process theory Quant the objects
are finite-dimensional complex Hilbert spaces H ,K, . . . and the processes
from H to K are completely positive maps 5 : ⌫(H) ! ⌫(K) between
their spaces of operators. Here � = C and ⌦ is the usual tensor product of
Hilbert spaces and maps. States d of an object H may be identified with
(unnormalised) density matrices, i.e. quantum states in the usual sense, as
may e�ects. The e�ect sends each operator 0 2 ⌫(H) to its trace Tr(0),
and is the maximally mixed state on H , with density matrix 1

dim(H)
1H .

Here a process is causal precisely when it is trace-preserving, and the dagger
is given by the Hermitian adjoint.

Example 3 (Quantum-Classical Processes) To combine Class and Quant
we may use the theory CStar whose objects are finite-dimensional C⇤-
algebras �, ⌫, . . . and processes are completely positive maps 5 : � ! ⌫,
with ⌦ given by the standard tensor product, � = C and the dagger again
by the Hermitian adjoint. Here sends each element 0 2 � to its trace
Tr(0) 2 C, while corresponds to the rescaling 1

3
1 of the element 1 2 �,

whereTr(1) = 3. Each C⇤-algebra comes with a metric induced by its norm,
providing a metric on states in the theory.

Class may be identified with the sub-theory of CStar containing the
commutative algebras, and Quant with those of the form ⌫(H) for some
Hilbert spaceH . More general algebras are ‘quantum-classical’, being given
by direct sums of quantum algebras.

3. Decompositions

A central aspect of IIT is evaluating the level of integration of a process, and
particularly of a state of some object. To do so we must compare the object
in question against ways it may be decomposed, as follows.

Firstly, recall that a process 5 from � to ⌫ is an isomorphism when there
is some (unique) 5 �1 from ⌫ to � for which 5

�1
� 5 and 5 � 5

�1 are both
identities. We write � ' ⌫ when such an isomorphism exists.

Definition 4 In any process theory, a decomposition of an object ( is a pair
of objects �, �0 along with an isomorphism ( ' � ⌦ �

0.
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In a process theory with , we will always consider decompositions
whose isomorphisms are causal and co-causal. We also assume that decom-
position isomorphisms preserve any distances between causal states.

For short we often denote such a decomposition simply by (�, �
0
) and

depict its isomorphism and inverse by

� �
0

(

,

� �
0

(

respectively. The fact that they form an isomorphism means that

= =

One can go on to develop a general study of decompositions in process
theories. Here we just note some of the basics, for more see Appendix A.

Firstly, any decomposition has an induced complement decomposition
(�, �

0
)
? := (�

0
, �), with isomorphism given by swapping its components:

��
0

(

All decompositions then satisfy (�, �
0
)
?? = (�, �

0
). Moreover, any object

always ( always comes with trivial decompositions denoted 1 := ((, �) and
0 := (�, () with 0 = 1?. Drawing either of their isomorphisms would just
mean drawing a blank wire labelled by (.

It is also useful to note when two decompositions of an object are ‘essen-
tially the same’. We write (�, �

0
) ⇠ (⌫, ⌫

0
) and call both decompositions
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equivalent when there exists isomorphisms 5 , 6 with

=
5 6

⌫ ⌫
0

⌫ ⌫
0

(

� �
0

(

(1)

In a theory with , we require moreover that 5 , 6 are causal and co-causal.
We write D(() for the set of all equivalence classes of decompositions

of ( under ⇠ (we will ignore the fact that in full generality each equivalence
class may be a proper class rather than a set). Often we abuse notation and
denote the members of simply by (�, �

0
) instead of as equivalence classes

[(�, �
0
)]⇠. It is easy to see that if two decompositions are equivalent then

so are their complements, so that (�)? is well-defined on D(().

Definition 5 By a decomposition set of an object ( in a process theory we
mean a subset D of D(() containing 1 and closed under (�)?.

Given any decomposition set D of ( and any (�, �
0
) 2 D, we define the

restriction of D to � via this decomposition to be the decomposition set

D|� :=

8>>>>>>>>>>>><
>>>>>>>>>>>>:

⌫ ⇠

�

| 9

⇠ �
0

⌫
0

s.t.

(

� �
0

⌫

⇠

⌫
0

2 D

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

✓ D(�)

Intuitively D|� consists of all decompositions of � which themselves can be
extended to give a decomposition of ( belonging to D, via (�, �

0
).

The most important examples of decomposition sets are the following.

Example 6 Let ( be an object with a given isomorphism

( ' (1 ⌦ · · · ⌦ (=
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representing ( as finite tensor of objects (8 which we may call elements. This
induces a decomposition set D of ( whose elements correspond to subsets
� of the elements. For any such subset, defining (� :=

À
�
( 9 we have a

decomposition ( ' (� ⌦ (� 0 where � 0 is the set of remaining elements. Then
D|(� contains a decomposition for each  ✓ � in the same way.

Decompositions via elements as above are the only kinds appearing
in classical or quantum IIT. However, more general ones allow us to treat
systems which are not decomposable into any finite set of ‘elementary’
subsystems.

4. Systems

We now begin by seeing how each of the main components of IIT, or any
‘generalised IIT’ in the sense of (Kleiner and Tull, 2021), may be treated
starting from any given process theory C. The focus will be on a class of
systems, as follows.

Definition 7 By a system type we mean a triple ( = ((,D,)) consisting of
an object ( with a decomposition set D and a causal process

)

(

(

which we call its time evolution. A state of ( is simply a state of ( in C. We
typically refer to a system type simply as a system.

The setD specifies the ways in which we will decompose our underlying
system when assessing integration. The process ) is intended to describe
the way in which states of the system evolve over each single ‘time-step’, via

)

B

B

7!
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In what follows it will be useful to be able to restrict any state B of our system
to the components of any decomposition (�, �

0
) 2 D by setting

B |�

�

:=

�
0

�

B

and defining B |�0 similarly. We define the trivial system � to have object �, a
single decomposition 1 = (�, �) = 0, and time evolution being the identity.

4.1 Subsystems

There are several operations on systems one carries out in the context of IITs.
The first is the taking of subsystems.

Definition 8 For each object ⇠ belonging to some decomposition (⇠,⇠
0
) 2

D, and each state B of (, the corresponding subsystem of ( is defined to be
the system type ⇠B := (⇠,D|⇠ ,) |⇠) with time evolution

)

B |⇠0
⇠

⇠
0

⇠

⇠
0

) |⇠ :=

⇠

⇠

The above definition of ) |⇠ is from (Oizumi et al., 2014) and aims to
capture the evolution of a state of ⇠ conditioned on the state of ⇠ 0 being
B |⇠0.

4.2 Cutting

A second important operation involves removing (some or all) causal con-
nections between the two di�erent components of a decomposition of a
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system. For any system ( = ((,D,)) and decomposition (⇠,⇠
0
) 2 D, we

should be able to form a new such cut system of the form

(
(⇠ ,⇠

0
) = ((,D,) (⇠ ,⇠

0
)
)

with the new evolution ) (⇠ ,⇠
0
) removing some influence between these re-

gions. The most straightforward form of cutting is a symmetric cut, in which
both components are fully disconnected from each other, with evolution

)

⇠

⇠

)

⇠
0

⇠
0

(

(

)
(⇠ ,⇠

0
)

(

(

:= (2)

(where the triangle denotes (⇠,⇠ 0
)
?). However, later we will see that some

IITs use additional structure to carry out alternative notions of system cut.

5. Cause and E�ect

Central to any IIT is a notion of causal influence between any two possible
subsystems of a system. These influences are captured in a pair of assign-
ments called the cause repertoire and e�ect repertoire of the system. In IIT
3.0 these contain probability distributions describing how the present state of
each subsystem constrains the past and future states of each other subsystem
(Oizumi et al., 2014). For our purposes it su�ces to note that such cause
and e�ect repertoires amount to specifying a pair of processes

caus

"

%

, eff

"

%

for each pair of underlying objects " , % of subsystems " , % of ( via some
state B. In this setting " is typically called the ‘mechanism’ and % the
‘purview’, and the above processes should capture the way in which the
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current state < of " constrains the previous or next state of %, respectively.
These constraints are captured by the pair of states of % given by plugging
in the ‘current’ state < of ":

"

<

7!
caus

%

<

,
eff

%

<

We will additionally require the processes caus, eff to be weakly causal
in the sense that whenever the state < is causal then each of the above states
must either be causal or 0.

Example 9 For any process theory (resp. with a dagger) there is a simple
choice of e�ect (resp. cause) repertoire given by

eff

%

=

"

)

%

"

%
0

"
0

caus

%

=

"

)
†

%

"

%
0

"
0

(3)

Note however that this definition of caus may not be weakly causal in our
above sense if )† is not causal.

In a probabilistic process theory we should instead have that

caus

%

=
"

)
†

%

"

%
0

"
0

<

_<

<

(4)

where _< is the unique normalisation scalar for the right-hand state, making
it causal if it is non-zero (and being zero otherwise). It is not in general
possible to define a process caus in terms of its action on states < in this
way, but this is possible for example in Class, Quant or CStar.
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However the repertoires are specified, we will need to compare their
values in a fixed state while varying %. To do so, for each state B of ( and
each such " , % we define the cause repertoire at B to be the state of ( given
by

B |"

causB (" , %)

(

:=
"

caus
%

caus
%
0

(

(5)

The features of this diagram have special names in (Oizumi et al., 2014);
the right-hand caus state above, given by taking mechanism " = �, is called
the unconstrained cause repertoire, and the whole process above B |" in the
diagram is called the extended cause repertoire at " , %. Defining them in
this way allows us to compare the repertoire values for varying " , %.

Similarly, effB (" , %), the e�ect repertoire at B, and the unconstrained
and extended e�ect repertoire are all defined in terms of eff in the same way.

5.1 Decomposing Repertoires

In an IIT we must assess how integrated each of these repertoire values
are at a given state . This involves comparing the repertoires with how
they behave under decomposing each of " and %. For any decompositions
("1,"2) 2 D|" of " and (%1, %2) 2 D|% of %, the decomposed cause
repertoire process is defined by

caus
"1

%1
caus

"2

%2

%

"

caus%1,%2
"1,"2

%

"

:= (6)

We then define the state caus%1,%2
B,"1,"2

(" , %) just like (5) but replacing caus
with the process (6). We decompose the e�ect repertoire in just the same
way in terms of eff.
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6. Generalised IITs

In summary, let C be a process theory coming with the features , , 3 of
Section 2. To define an integrated information theory we must specify:

1. a class Sys of system types, closed under subsystems;

2. a definition of system cuts, under which Sys is closed;

3. a choice of weakly causal processes caus, eff between the underlying
objects " , % of each pair of subsystems " , % via some state B, of any
system (.

More precisely, this provides the data of a generalised integrated infor-
mation theory in the sense of (Kleiner and Tull, 2021). From this data we
may now use the IIT algorithm from (Oizumi et al., 2014) to calculate the
usual objects of interest in IIT.

6.1 The IIT Algorithm

We now briefly summarise this algorithm as treated in the general setting
in (Kleiner and Tull, 2021), to which we refer for more details. Let us fix a
‘current’ state B of a system (. Firstly, the level of integration of each value
of the cause repertoire is defined by

q(causB (" , %)) := min 3 (causB (" , %) , caus%1,%2
B,"1,"2

(" , %)) (7)

where the minima is taken over all pairs of decompositions of " , % which
are not both trivial, i.e. equal to 1. 1 The integration level q(effB (" , %)) is
defined similarly in terms of eff.

For each choice of mechanism " , its core cause %2 and core e�ect %4

are the purviews % with maximal q values for caus, eff respectively. The
minima of their corresponding q values is then denoted by q("). We then
associate to " and object called its concept C("), essentially defined as the
triple

(causB (" , %
2

), effB (" , %
4

), q("))

1When causB (" , %) = 0 we alternatively set q = 0.
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More precisely, in (Kleiner and Tull, 2021), C(") is given by the pair of
above repertoire values with each ‘rescaled’ by q(").

The tupleQ(B) of all these concepts, for varying" , is called the Q-shape
Q(B) of the state B. The collection of all possible such tuples is denoted E(().
The level of integration of Q(B) is calculated similarly to (7) by considering
all possible cuts of the system. The subsystem " of ( whose Q-shape is
itself found to be most integrated is called the major complex. Rescaling
this Q-shape Q(" , B |" ) according to its level of integration, and using an
embedding E(") õ! E(() we finally obtain a new element E(B) 2 E(().

The claim of an IIT with regards to consciousness is that E(() is the
space of all possible conscious experiences of the system (, and that E(B)
is the particular experience attained when it is in the state B, with intensity
�(B) := || E(B) ||.

Remark 10 Let us make explicit how the specification of 1, 2, 3 above
provides the data of an IIT in the sense of (Kleiner and Tull, 2021). The
system class of the theory is Sys, and causB (" , %), effB (" , %) and their
decompositions are as outlined in Section 5.1. When C is probabilistic and
has distances 3 (0, 1) defined for arbitrary states 0, 1 of an object �, we may
define the space of proto-experiences PE(() of a system ( to be simply its
set of states, with ���� B

���� := B

However, if 3 is only defined on causal states, as in classical IIT, to follow
the algorithm from (Kleiner and Tull, 2021) one must instead set PE(() :=
Stc(() ⇥ R+ as in Example 3 of (Kleiner and Tull, 2021). For either choice,
for any subsystem " of ( we obtain an embedding PE(") õ! PE(()
by composing alongside "

? , and this can be seen to provide a further
embedding E(") õ! E(().

7. Examples

Let us now meet several examples of IITs defined from process theories.
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7.1 Generic IITs

Let C be any process theory coming with the features outlined in Section
2, including a dagger on processes. We define a generalised IIT denoted
IIT(C) by taking as systems all tuples ( = ((,D,)) of an object ( in C
along with a causal process ) and a decomposition setD induced by a single
isomorphism ( '

À
=

8=1 (8 in terms of elements (8 , as in Example 6. As
before each partition of these elements gives a decomposition of (. We
define system cuts to be symmetric as in (2) and the repertoires in the
straightforward sense of (3).

Remark 11 We can extend this example in to ways. Firstly we may allow
systems ( to come with arbitrary finite decomposition setsD of (. Secondly,
we may extend the definition to theories without daggers by instead simply
requiring each system ( to come with a process )� describing ‘reversed time
evolution’, and then define the cause repertoire by replacing )† with )�.

7.2 Classical IIT

The ‘classical’ IIT version 3.0 of Tononi and collaborators (Oizumi et al.,
2014) is built on the process theory Classm. As such a toy model of the
theory is provided by IIT(Classm). However IIT 3.0 itself di�ers from this
theory, using some more specific features of the process theories Class and
Classm which we now describe.

Firstly, note that in these classical process theories, for each object
�, each element 0 2 � corresponds to a unique state given by the point
distribution at 0, as well as a unique e�ect, namely the map sending 0 to 1
and all other elements of � to 0. We denote this state and e�ect both simply
by 0.2

Any process 5 from � to ⌫ is determined entirely by its compositions
with these special states and e�ects since plugging in such a state 0 and
e�ect 1 yields its value 5 (0, 1).

Another special feature of these classical process theories is that each
object � comes with a distinguished copying process from � to � ⌦ · · · ⌦ �,

2Typically these are the only kinds of ‘state’ considered, e.g. in (Oizumi et al., 2014)
and even in our related article (Kleiner and Tull, 2021). In contrast here the term ‘state’
would include all distributions over �, i.e. all states of the process theory Classm.
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for any number of copies of �, as well as a comparison process in the
opposite direction. We denote and define these respectively by the rules

� �
. . .

0

=

� �

. . .

0 0

�

� �
. . .

0

=

� �

. . .

0 0

for all 0 2 �. Abstractly, these operations form a canonical commutative
Frobenius algebra on each object, and there is no such canonical algebra on
each object in Quant due to the no-cloning theorem (Coecke et al., 2013).
We may now describe IIT 3.0 itself as follows.

7.2.1 Systems

In this theory systems are defined similarly to IIT(Classm), being given by a
finite metric space ( given as a product of elements ( '

À
=

8=1 (8 , along with
a causal (i.e. stochastic) evolution ) on (. Additionally in (Oizumi et al.,
2014) each evolution ) is required to satisfy conditional independence,
which states that for all B, C 2 (, with C = (C1, . . . , C=) for some C8 2 (8 we
have

)

B

C

= )1

B

C1

)=

B

C=

( (

(=(1

. . .

where for each element (8 we define the process )8 by

:=)8

(8

(

)

(8

(

(=(1 . . . . . .

having depicted the isomorphism ( '
À

=

8=1 (8 by the triangle above. In
other words, conditional independence states that the probabilities for the
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next state of each element (8 are independent. Equivalently, ) must satisfy

(

(1

. . .

(

(

)

)1 )=

(=

=

(1

. . .

(=

7.2.2 Cuts

Rather than our earlier symmetric cuts, the system cuts used in IIT 3.0 are
directional. For any decomposition (⇠,⇠

0
) of ( with ⇠ =

À
92�

( 9 for
some subset of notes indexed by � ✓ {1, . . . , =}, we define the cut evolution
)
(⇠ ,⇠

0
) using conditional independence by setting

)
(⇠ ,⇠

0
)

8

(8

(

:=

©≠≠≠≠≠≠≠≠≠≠≠≠
´

)8

(8

(

(8 2 �) ,

)8

(8

⇠
⇠
0

⇠

(

(8 8 �)

™ÆÆÆÆÆÆÆÆÆÆÆÆ
¨

In other words, in the cut system all causal connections⇠ ! ⇠
0 are replaced

by noise, while all those into ⇠ remain intact.

7.2.3 Repertoires

Let us now define the processes caus, eff between a pair of objects " and %,
with " =

À
:

8=1 "8 and % =
À

A

9=1 % 9 for some subsets {"1, . . . ,": } and
{%1, . . . , %A } of elements of the system.

We begin with eff. When % is simply a single element % 9 , eff is defined
exactly as in (3). For more general % we define eff to again satisfy a form of
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conditional independence, so that

eff = eff eff. . .

%
%1 %A

< < <

" ""

? ?1 ?A

for all < 2 " , ? = (?1, . . . , ?A ) 2 %. Equivalently, we have that

eff =

%

"

"

%1

. . .eff eff
%A

""

%

In a similar fashion, whenever " is a single element "8 we define caus from
" to % as in (4), while for more general " we require that

caus =
"

"1

. . .caus caus
"

:

%%

? ? ?

%

< <1 <:

_<

for all < = (<1, . . . ,<:) 2 " and ? 2 %, where _< is the normalisation
scalar making caus � < a causal state (probability distribution) if it is non-
zero, or _< = 0 otherwise. Equivalently, this means that

caus =

%

"

%

"1

. . .caus caus
"

:

%%

"

<

<

_<

for each < 2 " . This concludes the data of classical IIT.
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7.3 Quantum IIT

Zanardi, Tomka and Venuti have proposed a quantum extension of classical
IIT (Zanardi et al., 2018). In fact it is comparatively much simpler to describe
in our approach, being precisely the theory IIT(Quant).

Explicitly, systems in this theory are given by finite-dimensional complex
Hilbert spaces H along with a given decomposition into elements H 'À

=

8=1H8 and a completely positive trace-preserving map) on ⌫(H). States
and repertoire values are given by density matrices d. In this theory each
Q-shapeQ(d) may be encoded as a single positive semi-definite operator on
the space (C2)⌦= ⌦ C2 ⌦ H , as discussed in (Zanardi et al., 2018).

7.4 Quantum-Classical IIT

We may now define a version of quantum-classical IIT as IIT(CStar). This
synthesizes quantum IIT with the toy version IIT(Classm) of classical IIT,
containing both kinds of systems. In future it would be desirable to synthesise
quantum IIT with IIT 3.0 proper. Since the latter relies on the presence of
copying maps, this may be achievable using the more general notion of a
leak on a C⇤-algebra (Selby and Coecke, 2017).

8. Outlook

In this article we have taken first steps to show how Integrated Information
Theory, and its generalisations to other domains of physics, may be studied
categorically. There are many avenues for future work.

Firstly, we have so far made no requirements on the cause and e�ect
repertoire processes caus, eff. To be fit for their name these processes
should be required to satisfy axioms which ensure they have a causal in-
terpretation, ideally determining them uniquely within any given process
theory. Monoidal categories provide a natural setting for the study of causal-
ity, a major contemporary topic in the foundations of physics (Kissinger and
Uijlen, 2017).

At a higher level, it seems natural for the class of systems Sys of a
generalised IIT to itself form a category. The theory itself should then give
a functor into another category Exp of (spaces of) phenomenal experiences;
a formalization of the latter is for example given in (Kleiner and Tull, 2021).
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Making IIT functorial in this way will likely involve modifying it to be
more natural from a categorical perspective. Developing a useful notion of
integration applicable to any monoidal category may also help to resolve
mathematical problems of the IIT algorithm, for example its relying on the
unique existence of core purviews which are not guaranteed�.
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A. Decompositions and Integration

Here we briefly mention a few further results about decompositions of objects
in process theories; we leave a detailed study of their properties to future
work.

Our earlier definition of D|� was based on an idea of one decomposition
as being ‘contained in’ another. Let us make this precise.

Definition 12 Let ( be an object in a process theory and (�, �
0
), (⌫, ⌫0

)

two decompositions. We write that (�, �0
) � (⌫, ⌫

0
) whenever there exists

an object ⇠ and decompositions (�,⇠) of ⌫ and (⌫
0
,⇠) of �0 such that

⌫

⌫
0

=

(

� ⇠

�
0

�

(

⌫
0

⇠

(8)
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Intuitively, this states that � is contained in ⌫ (as is ⌫0 within �0) in a way
compatible with these decompositions.

Lemma 13 Let ( be an object in a process theory. Then � forms a pre-order
on the set of decompositions of (, with top element 1 and bottom element 0,
and (�)

?as an involution.

Proof. We always have (�, �
0
) � (�, �

0
) by taking ⇠ = � and using

the decompositions 1 and 0 on � in (8). Similarly (�, �
0
) � 1 by taking

⇠ = �0. To see that (�)? is an involution, suppose that (�, �0
) � (⌫, ⌫

0
) as

above. Then we have (⌫, ⌫
0
)
?
� (�, �

0
)
? since

�
0

�

=

(

⌫
0
⇠

�
0

⌫
0

(

�⇠

=
⌫

(

=
⌫

⌫
0

(

�⇠ ⌫
0

�⇠

Hence we always have 0 = 1? � (�, �
0
) for all (�, �0

). For transitivity,
note that whenever (�, �0

) � (⌫, ⌫
0
) � (⇠,⇠

0
) via some respective objects

⇡, ⇢ then we have

=
�
0

�

(

⇡ ⇠
0

⇢

⌫
0

�

(

⇡ ⇠
0

⇢

⌫ ⇠

⇠
0

(

⇢� ⇡

⌫⌫
0

=

so that (�, �0
) � (⇠,⇠

0
) via the above decompositions (⇡ ⌦ ⇢ ,⇠

0
) of �0

and (�,⇡ ⌦ ⇢) of ⇠. ⌅

Recall that in any category, a sub-object of an object � is an (isomorphism
class of a) monomorphism < : " ! �. It is split when 4 � < = id" for
some 4. The sub-objects of � form a partial order Sub(�).
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Lemma 14 In any process theory with , , for any object (:

1. Any decomposition (�, �
0
) of ( makes � a split sub-object of ( via

�

�
0

(

,

�

�
0

(

(9)

Moreover if (�, �0
) � (⌫, ⌫

0
) then �  ⌫ in Sub(().

2. � restricts to a partial order  on D((), again with top element 1,
bottom 0 and involution (�)

?.

Proof. 1: We have

= =

If (�, �0
) � (⌫, ⌫

0
) then the splitting for � factors over that for ⌫ since:

�

�
0

(

= �
0

�

(

⌫
0

⇠

⌫ ⌫
0

=

(

�

⇠

It follows that �  ⌫ in Sub(().
2: We need to show that any two decompositions (�, �0

) and (⌫, ⌫
0
) are

equivalent under � precisely when they are equivalent in the sense of (1).
Firstly, if there exists causal and co-causal isomorphisms 5 , 6 making (1)
hold, then we have

=
5
�1 6

� ⌫
0

� ⌫
0

(

�
0

(

⌫
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Viewing 5
�1 and 6 as decompositions (�, �) of ⌫ and (�, ⌫

0
) of �0, re-

spectively, this gives that (⌫, ⌫0
) � (�, �

0
). Then (�, �

0
) � (⌫, ⌫

0
) holds

similarly.
Conversely, if (�, �0

) � (⌫, ⌫
0
) � (�, �

0
), via respective objects ⇠,⇡

then

⌫ ⌫
0

(

⇠
�

⇡

=

⌫

⌫
0

⌫

(

⇠
�
0

⇡ ⌫

=

⌫

⌫
0

(

Since the right-hand map is an epimorphism by the first part, this gives that

⌫

⇠
�

⇡

=

⌫

⌫

⌫

Dually, composing in the other order gives the identity on �, making these
causal and co-causal isomorphisms � ' ⌫. Similarly we obtain such iso-
morphisms �0

' ⌫’. Then we have

=
⌫

⌫

(

⇠

⌫

⇡

�
0

⌫

(

⇡

⌫
0

⇠

�

�

=
⌫
0

⌫

(

as required. Now 2 follows since any pre-order restricts to a partial order on
its set of equivalence classes, and so � becomes a partial order  on D(().
It is easy to see that the earlier properties of 1, 0, (�)? carry over to . ⌅
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A.1 Integration

Let us briefly allude to how integration may generally be studied and quan-
tified using decomposition sets.

Suppose we have objects (, (0 with given decomposition sets D,D0 and
for each (�, �

0
) 2 D and (⌫, ⌫

0
) 2 D0 a process 5 ⌫

�
from � to ⌫. We denote

5
(
0

(
simply by 5 . Whenever we have a given distance function 3 on the set of

processes from ( to (0, we may define the level of integration of the family
( 5

⌫

�
)�,⌫ as

q( 5 ) := min
D⇥D0

3

©≠≠≠≠≠≠≠≠≠≠≠
´

(

5

(
0

,

� �
0

(

5
⌫

�
5
⌫
0

�
0

(
0

⌫
0

⌫

™ÆÆÆÆÆÆÆÆÆÆÆ
¨

where we exclude the top element (1, 1) of D ⇥ D0 in the minimisation.

Example 15 Given any process 5 from ( to (0 we may define such a family
( 5

⌫

�
)�,⌫ with 5

(
0

(
= 5 by setting

(

⌫
0

5

⌫

(
0

�

5
⌫

�

⌫

:=

�
0

�

Example 16 Our earlier description of the IIT algorithm precisely includes
evaluating the integration level of each of the families of processes (caus)" ,%

and (eff)" ,% using the state-dependent distance

3<

©≠≠≠
´
5

"

%

, 6

"

% ™ÆÆÆ
¨
:= 3

©≠≠≠
´
5

%

<

, 6

%

<

™ÆÆÆ
¨
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where < = B |" and 3 is the distance on St(().


